
Module-3: Pfaffian Differential Equations

1. Definition

Let Fi , (i = 1,2, · · · ,n), be n functions of some or all of the n independent variables

x1,x2, · · · ,xn. The the expression of the form

n∑
i=1

Fi(x1,x2, · · · ,xn)dxi (1)

is called a Pfaffian differential form and the equation

n∑
i=1

Fi(x1,x2, · · · ,xn)dxi = 0 (2)

is known as Pfaffian differential equation.

It is to be noted that there is a fundamental difference between Pfaffian differential

equations in two variables and those in higher number of variables.

In the case of two variables x, y, we can express the equation (2) in the form

P (x,y)dx+Q(x,y)dy = 0, i.e.
dy

dx
= f (x,y) (3)

where f (x,y) = −P /Q. If P and Q are defined and single-valued in the xy-plane, then

f (x,y) is also defined uniquely and is single-valued in the same plane. Thus the so-

lution of the equation (3) subject to the boundary condition y = y0 at x = x0 consists

of the curve passing through this point and the tangent at each point of the curve is

defined by (2). Hence, the differential equation (3) defines a one-parameter family of

curves in the xy-plane, i.e there exists a function of the type

ϕ(x,y) = c, (4)

c being constant, which defines a function y(x) satisfying the differential equation (3)

identically at least in a certain region in the xy-plane.

The differential form P dx+Qdy is said to be exact or integrable if it can be written

in the form dϕ(x,y). Otherwise, we write the equation (4) as the differential form

∂ϕ

∂x
dx+

∂ϕ

∂y
dy = 0
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Chapter 1 Basic Concepts of Partial Differential Equations

and, hence, there exists a function µ(x,y) such that

1
P

∂ϕ

∂x
=

1
Q

∂ϕ

∂y
= µ(x,y).

Multiplying both sides of the equation (4) by µ(x,y), we get

µ(P dx+Qdy) = dϕ = 0.

The function µ(x,y) is called an integrating factor of the Pfaffian differential equation

(3). Thus we have the following theorem:

Theorem 1: For two variables, Pfaffian differential equation always possesses an integrat-

ing factor.

Next, consider Pfaffian differential equation in three variables x,y,z of the type

P (x,y,z)dx+Q(x,y,z)dy +R(x,y,z)dz = 0 (5)

which can be written in vector form as

X ·dr = 0 (6)

where X = (P ,Q,R) and dr = (dx,dy,dz).

Before the discussions of the equations of the type (5) or (6), we prove the following

two lemmas:

Lemma 1: A necessary and sufficient condition for the existence of a relation of the form

F(u,v) = 0 between two functions u(x,y) and v(x,y), not involving x or y explicitly, is that

∂(u,v)
∂(x,y)

= 0. (7)

Proof: Necessity:

Since

F(u,v) = 0. (8)

is an identity in x and y, so differentiating this with respect to x and y, we get respec-

tively

∂F
∂u

∂u
∂x

+
∂F
∂v

∂v
∂x

= 0 and
∂F
∂u

∂u
∂y

+
∂F
∂v

∂v
∂y

= 0
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Chapter 1 Basic Concepts of Partial Differential Equations

Eliminating ∂F
∂v between these equations, we get

∂F
∂u

∂(u,v)
∂(x,y)

= 0.

Since (8) involves both u and v, so ∂F
∂u , 0 and hence

∂(u,v)
∂(x,y)

= 0.

Sufficiency:

Eliminating y between u = u(x,y) and v = v(x,y), we obtain a relation of the type

F(u,v,x) = 0.

Differentiating with respect to x and y we have respectively

∂F
∂x

+
∂F
∂u

∂u
∂x

+
∂F
∂v

∂v
∂x

= 0,

∂F
∂u

∂u
∂y

+
∂F
∂v

∂v
∂y

= 0.

Elimination of ∂F∂v between these equations leads to

∂F
∂x

∂v
∂y

+
∂F
∂u

∂(u,v)
∂(x,y)

= 0, i.e.
∂F
∂x

∂v
∂y

= 0. (using (7))

Since v = v(x,y), so ∂v
∂y , 0 and hence ∂F

∂x = 0 i.e. F does not contain x explicitly.

Similarly, F does not contain y explicitly.

Lemma 2: Let X be a vector function of x, y, z and X · (∇×X) = 0 and µ is a function of x,

y, z, then (µX) · {∇× (µX)} = 0.

Proof: Let X = (P ,Q,R). Then

(µX) · {∇× (µX)} = µP

{
∂
∂y

(µR)− ∂
∂z

(µQ)
}
+µQ

{
∂
∂z

(µP )− ∂
∂x

(µR)
}

+µR
{
∂
∂x

(µQ)− ∂
∂y

(µP )
}

= µ2
{
P

(
∂R
∂y
− ∂Q
∂z

)
+Q

(
∂P
∂z
− ∂R
∂x

)
+R

(
∂Q
∂x
− ∂P
∂y

)}
+µ

(
P R

∂µ

∂y
− PQ

∂µ

∂z
+ PQ

∂µ

∂z
−QR

∂µ

∂x
+QR

∂µ

∂x
− P R

∂µ

∂y

)
= µ2X · (∇×X) = 0.

Using the factor 1
µ , the converse of Lemma 2 follows easily.
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Chapter 1 Basic Concepts of Partial Differential Equations

We now return to Pfaffian differential equation (5). All such equations may not

be integrable. However, if we can find a function µ(x,y,z) such that the expression

µ(pdx+Qdy+Rdz) is an exact differential dϕ(x,y,z), say, then the equation (5) becomes

integrable. The function µ(x,y,z) is called integrating factor and the function ϕ(x,y,z)

is termed as the primitive of the differential equation (5).

Theorem 2: A necessary and sufficient condition for the Pfaffian differential equationX ·dr =

0 to be integrable is that X · (∇×X) = 0, where X = (P ,Q,R) and dr = (dx,dy,dz).

Proof: Necessity:

Since the equation X ·dr = 0, i.e. P dx +Qdy +Rdz = 0 is integrable, so there exists a

relation of the type ϕ(x,y,z) = constant, so that

∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz = 0

and, hence, an integrating factor µ(x,y,z) exists such that

µP =
∂ϕ

∂x
, µQ =

∂ϕ

∂y
, µR =

∂ϕ

∂z
, i.e. µX = ∇ϕ.

It then follows that ∇× (µX) = ∇× (∇ϕ) = 0. Thus using Lemma 2, we have X · (∇×X) =

0.

Sufficiency:

Suppose z is constant. Then the differential equation X ·dr = 0 reduces to P (x,y,z)dx+

Q(x,y,z)dy = 0 which by Theorem 2 possesses a solution of the form ϕ(x,y,z) = con-

stant = c1, say, which may involve z. Also, there exists a function µ(x,y,z) such that

µP = ∂ϕ
∂x , µQ = ∂ϕ

∂y .

Then the equation P dx+Qdy +Rdz = 0 gives

∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

(
µR−

∂ϕ

∂z

)
dz = 0, i.e. dϕ+ψdz = 0 (9)

where dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy and ψ = µR−

∂ϕ

∂z
. (10)

Since µX = (µP , µQ, µR) =
(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
+ψ

)
= ∇ϕ+ (0,0,ψ),

so µX · {∇× (µX)} =
(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
+ψ

)
·
(
∂ψ

∂y
, −
∂ψ

∂x
,0

)
=
∂(ϕ,ψ)
∂(x,y)

.

Now, according to Lemma 2, X · (∇ ×X) = 0 implies µX · {∇ × (µX)} = 0 and, therefore,
∂(ϕ, ψ)
∂(x,y) = 0. Also, by Lemma 1, there exists a relation between ϕ and ψ which is inde-

pendent of x and y, but not necessarily of z. In other words, ψ is a function of ϕ and z
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only, i.e. ψ = ψ(ϕ,z). Then the equation (9) gives ∂ϕ
∂z +ψ(ϕ,z) = 0 which by Theorem-1

has a solution of the form Φ(ϕ,z) = constant = c, say. Replacing ϕ by its expression

in terms of x,y,z, we obtain a solution in the form F(x,y,z) = c. Hence the equation

X ·dr = 0 is integrable.

Theorem 3: If the differential equation P dx +Qdy + Rdz = 0 has an integrating factor,

then one can find an infinity of them.

Proof: Let µ(x,y,z) be an integrating factor of the given equation. Then there exists a

function ϕ(x,y,z) such that

µP =
∂ϕ

∂x
, µQ =

∂ϕ

∂y
, µR =

∂ϕ

∂z
.

Now, if Φ(ϕ) is an arbitrary function of ϕ, then we can write

µ
dΦ
dϕ

(P dx+Qdy +Rdz) = 0 ⇒ dΦ
dϕ

(
∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz

)
= 0

⇒ dΦ = 0

∴ Φ(ϕ) = constant.

Thus, if µ is an integrating factor yielding a solution ϕ = constant and since Φ is an

arbitrary function of ϕ, so there exists an infinitely many integrating factors.

Example 1: Verify that the equation (yz+z2)dx−zxdy+xydz = 0 is integrable and find

its primitive.

Solution: We have X = (yz+ z2, −zx,xy) so that ∇×X = (2x,2z,−2z).

Then X · (∇×X) = (yz + z2)(2x) + (−zx)(2z) + (xy)(−2z) = 0. Hence the given equation is

integrable.

Now, if we take x to be constant, then the given equation reduces to

−zxdy + xydz = 0 ⇒
dy

y
=
dz
z
⇒ y = c1z.

Thus ϕ(x,y,z) =
y

z
= c1 and so µ =

1
Q

∂ϕ

∂y
= − 1

zx
· 1
z
= − 1

z2x

and ψ = µP −
∂ϕ

∂x
= − 1

z2x
(yz+ z2) = −

y + z
zx

Hence the equation dϕ+ψdx = 0 leads to

∂ϕ

∂y
dy +

∂ϕ

∂z
dz+ψdx = 0

or
1
z
dy −

y

z2
dz −

y + z
zx

dx = 0

or zxd(y + z) = (y + z)d(zx)
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Chapter 1 Basic Concepts of Partial Differential Equations

Integrating, we have (y + z) = czx, c being constant. Thus the required primitive is

y + z = czx.

2. Solution of Pfaffian differential equations in three Variables

We now discuss some methods of solving Pfaffian differential equations in three

variables x, y, z. We assume that the condition of integrability is satisfied.

I. Method-1: (By inspection)

In some cases, the differential equation can be solved by inspection. In particular,

for the equations when ∇×X = 0, then X = ∇ϕ and the equation X ·dr = 0 i.e. ∇ϕ ·dr =

0 gives

∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz = 0, i.e. dϕ = 0

whence the primitive is ϕ(x,y,z) = constant.

Example 2: Verify that the differential equation (y2+yz)dx+(z2+zx)dy+(y2−xy)dz = 0

is integrable and find its primitive.

Solution: Here X = (y2 + yz, z2 + zx, y2 −xy) so that ∇×X = 2(y − z−x,y,−y) and hence

X · (∇×X) = 2{(y2 + yz)(y − z − x) + (z2 + zx)y − (y2 − xy)y} = 0.

Thus the given equation is integrable.

Now the equation can be written as

y(y + z)dx + z(z+ x)dy + y(y − x)dz = 0,

or y(y + z)d(z+ x) + (y + z)(z+ x)dy − y(z+ x)d(y + z) = 0

Dividing both sides by y(y + z)(z+ x), we have

d(z+ x)
(z+ x)

+
dy

y
−
d(y + z)
(y + z)

= 0

Integrating, the complete primitive is given by y(z+x) = c(y+z), where c is integration

constant.

Example 3: Is the equation yz(y+z)dx+zx(x+z)dy+xy(x+y)dz = 0 integrable? Justify

your answer. If it is integrable, find the primitive.
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Solution: We have X = {yz(y + z), zx(x + z), xy(x + y)} so that ∇×X = (0,0,0) and hence

X · (∇×X) = 0. Thus the given equation is integrable.

Now the given equation can be written as yz(x + y + z)dx + zx(x + y + z)dy + xy(x +

y + z)dz − xyz(dx+ dy + dz) = 0.

Dividing both sides by xyz(x+ y + z) we get

dx
x

+
dy

y
− dz
z
−
d(x+ y + z)
x+ y + z

= 0 ⇒ d{log
xyz

x+ y + z
} = 0.

Integrating, we have log
(
xyz
x+y+z

)
= constant, i.e xyz = c(x + y + z) which is the primitive

of the given equation, c being integration constant.

II. Method-2: (Separation of variables)

If it is possible to write the given equation in the form P (x)dx+Q(y)dy+R(z)dz = 0,

then the integral surface is obtained as∫
P (x)dx+

∫
Q(y)dy +

∫
R(z)dz = c,

c being the integration constant.

Example 4: Verify that the differential equation yzdx+2zxdy−3xydz = 0 is integrable

and find its complete primitive.

Solution: Here X = (yz,2zx,−3xy) so that ∇×X = (−5x,4y,z) and hence X · (∇×X) =

yz(−5x) + 2zx(4y)− 3xy(z) = 0. Thus the given equation is integrable.

Now dividing both sides of the given equation by xyz, we have

dx
x

+2
dy

y
− 3dz

z
= 0

which, on integration, leads to the primitive as xy2 = cz3, c being integration constant.

III. Method-3: (one variable separable)

If one of the variable, say x, is separable, then the Pfaffian differential equation can

be written as

P (x)dx +Q(y,z)dy +R(y,z)dz = 0.
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Noting that X = (P (x),Q(y,z),R(y,z)) and ∇×X =
(
∂R
∂y −

∂Q
∂x ,0,0

)
it follows that the con-

dition of integrability X · (∇×X) = 0 implies that ∂R
∂y = ∂Q

∂x . Hence, the expression

Qdy+Rdz is an exact differential ψ(y,z), say. Thus, we can write the above differential

equation as

P (x)dx + dψ(y,z) = 0 ⇒
∫
P (x)dx+ψ(y,z) = c

Example 5: Verify that the differential equation (y2−z2)(x2−1)dx−2zxdy+2xydz = 0

is integrable and hence solve it.

Solution: We can write the given equation in the form

x2 − 1
x

dx − 2z
y2 − z2

dy +
2y

y2 − z2
dz = 0

so that X = (x
2−1
x , −2z

y2−z2 ,
2y

y2−z2 ) and ∇×X = (0,0,0), so that the condition of integrability

X · (∇×X) = 0 is satisfied. Thus the equation is integrable.

Now let us rewrite the give equation in the form(
x − 1

x

)
dx − 2

d(y/z)
(y/z)2 − 1

= 0

Integrating, we have 1
2x

2 − logx − log (y/z)−1
(y/z)+1 = logc ⇒ y − z = c(y + z)e 1

2x
2
, where c is

constant.

IV. Method-4: (Homogeneous equation)

If the functions P (x,y,z), Q(x,y,z) and R(x,y,z) of the Pfaffian differential equation

be homogeneous in x, y and z of the same degree n, say, then this equation can be

transformed by the substitutions y = ux, z = vx, where u and v are function of x only,

to the equation of the form

P (1,u,v)dx+Q(1,u,v)(udx+ xdu) +R(1,u,v)(xdv + vdx) = 0

or
dx
x

+A(u,v)du +B(u,v)dv = 0 (11)

where

A(u,v) =
Q(1,u,v)

P (1,u,v) +uQ(1,u,v) + vR(1,u,v)
,

B(u,v) =
R(1,u,v)

P (1,u,v) +uQ(1,u,v) + vR(1,u,v)

9
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The equation (11) can be solved by Method-3.

It may be noted that such type of equation can also be solved if F(x,y,z) = xP +yQ+

zR , 0 and its reciprocal is an integrating factor.

Example 6: Solve the equation (x2z − y3)dx + 3xy2dy + x3dz = 0 by verifying the con-

dition of integrability.

Solution: Here X = (x2z − y3, 3xy2,x3) and so ∇×X = (0, −2x2, 6y2). Thus X · (∇×X) =

(x2z − y3) · 0+3xy2(−2x2) + x3 · 6y2 = 0 and hence the given equation is integrable.

Now the functions x2z−y3, 3xy2,x3 are homogenous functions of x,y,z of degree 3

and so we put y = ux, z = vx to transform the given equation to the form

(vx3 −u3x3)dx+3x ·u2x2(udx+ xdu) + x3(vdx + xdv) = 0

or
2dx
x

+
3u2du + dv
u3 + v

= 0

Integrating, x2(u3 + v) = constant = c

or x2
(
y3

x3
+
z
x

)
= c, i.e. y3 + zx2 = cx

which is the required solution.

Alternatively, we may solve the equation as follows :

We have F(x,y,z) = xP + yQ+ zR = x(x2z − y3) + 3xy3 + x3z = 2(x3z+ xy3) , 0

and dF = 2(3x2zdx + x3dz+ y3dx+3xy2dy) = 2(3x2z+ y3)dx +6xy2dy +2x3dz.

The integrating factor is µ(x,y,z) = 1
F = 1

2(x3z+xy3) .

Multiplying both sides of the given equation by µ(x,y,z), we have

(x2z − y3)dx+3xy2dy + x3dz
2(x3z+ xy3)

= 0

or
(3x2z+ y3)dx +3xy2dy + x3dz − 2(x2z+ y3)dx

2(x3z+ xy3)

or
(3x2z+ y3)dx +3xy2dy + x3dz

2(x3z+ xy3)
− dx
x

= 0

or
(dF/2)
F

=
dx
x

Integrating we get F = cx2, c being a constant. Hence, the required solution is x3z +

xy3 = c′x2, i.e. x2z+ y3 = c′x, where c′ = c/2.
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V. Method-5: (Method of reduction)

If one of the independent variables, say z, is supposed to be constant, then the

Pfaffian differential equation reduces to P dx+Qdy = 0 whose solution can be obtained

in the form ϕ(x,y) = c, where c is independent of x and y but may depend on z. So,

taking differential of ϕ(x,y) and then equating this expression with P dx +Qdy +Rdz,

we determine c. Integrating ∂c
∂z , the value of c is obtained as a function of z and then

ϕ(x,y) = c gives the required solution.

Example 7: Verifying the integrability of the differential equation x(y2−a2)dx+y(x2−

z2)dy − z(y2 − a2)dz = 0, solve it.

Solution: Here, we take y to be constant and then the given equation reduces to

x(y2 − a2)dx − z(y2 − a2)dz = 0 i.e xdx − zdz = 0.

Integrating, we have ϕ(x,z) = x2 − z2 = c, where c is independent of x and z, but may

depend on y. Differentials of ϕ(x,z) = c give

xdx − 1
2
∂c
∂y
dy − zdz = 0

or x(y2 − a2)dx − 1
2
(y2 − a2)∂c

∂y
dy − z(y2 − a2)dz = 0

Comparing this with the given equation, it follows that

−1
2
(y2 − a2)∂c

∂y
= y(x2 − z2) = cy

or
∂c
∂y

+
2cy
y2 − a2

= 0

Integrating, c(y2 − a2) = c′, where c′ is an absolute constant. Hence the required solu-

tion is x2 − z2 = c′

y2−a2 i.e. (x2 − z2)(y2 − a2) = c′.

VI. Method-6: (Auxiliary equations)

The condition of integrability of the equation X ·dr = 0, given by X · (∇×X) = 0,

where X = (P ,Q,R), dr = (dx,dy,dz), can be written as

P

(
∂Q
∂z
− ∂R
∂y

)
+Q

(
∂R
∂x
− ∂P
∂z

)
+R

(
∂P
∂y
− ∂Q
∂x

)
= 0

Comparing this with the equation X ·dr = 0, i.e. with P dx+Qdy +Rdz = 0, we get

dx
∂Q
∂z −

∂R
∂y

=
dy

∂R
∂x −

∂P
∂z

=
dz

∂P
∂y −

∂Q
∂x
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These equations are called auxiliary equations which can be solved by the methods

discussed earlier.

Suppose f (x,y,z) = a and g(x,y,z) = b be two integrals of the above equations,

where a and b are constants. We have to find A and B such that Adf +Bdg = 0 becomes

identical with the given equation. Then using f = a and g = b, the values of A and B

can be found out and the required solution is then obtained on integration.

Example 8: Solve the equation z(z + y2)dx + z(z + x2)dy − xy(x + y)dz = 0 by verifying

the condition of integrability.

Solution: Since X = {z(z+ y2), z(z+ x2), −xy(x+ y)}, ∇×X = {−2(x2 + xy + z), 2(y2 + xy +

z), 2z(x − y)}, so X · (∇×X) = −2z(z + y2)(x2 + xy + z) + 2z(z + x2)− 2zxy(x + y)(x − y) = 0

and thus the condition of integrability of the given equation is satisfied and hence the

equation is integrable.

Now the auxiliary equations are

dx

z+ x2 + xy
=

dy

−z − y2 − xy
=

dz
(y − x)z

.

From these equations, it follows that

d(x+ y)
x+ y

+
dz
z

= 0 and ydx+ xdy − dz = 0,

leading to the solutions f (x,y,z) = (x+y)z = constant and xy−z = constant. If the given

equation is identical with the equation Adf +Bdg = 0, i.e. with A{zdx+zdy+(x+y)dz}+

B(ydx + xdy − dz) = 0, then A = z − xy, B = (x + y)z. Hence the equation Adf +Bdg = 0

gives

(z − xy)d{(x+ y)z)} = (x+ y)z d(xy − z)

leading to the required solution as (x+ y)z = c(xy − z).
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